Natural Language Inference
Natural language inference (NLI) is the task of determining whether a “hypothesis” is true (entailment), false (contradiction), or undetermined (neutral) given a “premise”.
Example:
Premise | Label | Hypothesis |
---|---|---|
A man inspects the uniform of a figure in some East Asian country. | contradiction | The man is sleeping. |
An older and younger man smiling. | neutral | Two men are smiling and laughing at the cats playing on the floor. |
A soccer game with multiple males playing. | entailment | Some men are playing a sport. |
Approaches used for NLI include earlier symbolic and statistical approaches to more recent deep learning approaches. Benchmark datasets used for NLI include SNLI, MultiNLI, SciTail.
Papers 1. T5 1. BERT
Cross-Lingual Natural Language Inference
Using data and models available for one language for which ample such resources are available (e.g., English) to solve a natural language inference task in another, commonly more low-resource, language.
Visual Entailment
Visual Entailment (VE) - is a task consisting of image-sentence pairs whereby a premise is defined by an image, rather than a natural language sentence as in traditional Textual Entailment tasks. The goal is to predict whether the image semantically entails the text.