1. Dialogue Generation
    1. Datasets
      1. Persona-Chat
    2. Papers
      1. 2020 - You Impress Me: Dialogue Generation via Mutual Persona Perception - P^2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding. Specifically, P^2 Bot incorporates mutual persona perception to enhance the quality of personalized dialogue generation. Experiments on a large public dataset, Persona-Chat, demonstrate the effectiveness of our approach, with a considerable boost over the state-of-the-art baselines across both automatic metrics and human evaluations.
  2. Dialogue State Tracking
    1. Datasets
      1. MultiWOZ 2.2
      2. WOZ 2.0
    2. Papers
      1. 2021 EMNLP - Amendable Generation for Dialogue State Tracking - In task-oriented dialogue systems, recent dialogue state tracking methods tend to perform one-pass generation of the dialogue state based on the previous dialogue state. The mistakes of these models made at the current turn are prone to be carried over to the next turn, causing error propagation. In this paper, we propose a novel Amendable Generation for Dialogue State Tracking (AG-DST), which contains a two-pass generation process: (1) generating a primitive dialogue state based on the dialogue of the current turn and the previous dialogue state, and (2) amending the primitive dialogue state from the first pass. With the additional amending generation pass, our model is tasked to learn more robust dialogue state tracking by amending the errors that still exist in the primitive dialogue state, which plays the role of reviser in the double-checking process and alleviates unnecessary error propagation. Experimental results show that AG-DST significantly outperforms previous works in two active DST datasets (MultiWOZ 2.2 and WOZ 2.0), achieving new state-of-the-art performances.
      2. 2021 ACL - A Sequence-to-Sequence Approach to Dialogue State Tracking - Seq2Seq-DU employs two BERT-based encoders to respectively encode the utterances in the dialogue and the descriptions of schemas, an attender to calculate attentions between the utterance embeddings and the schema embeddings, and a decoder to generate pointers to represent the current state of dialogue. Seq2Seq-DU has the following advantages. It can jointly model intents, slots, and slot values; it can leverage the rich representations of utterances and schemas based on BERT; it can effectively deal with categorical and non-categorical slots, and unseen schemas.
  3. Task-Oriented Dialogue Systems
    1. Datasets
      1. KVRET
      2. DialoGLUE
    2. Papers
      1. 2017 - SigDial: Key-Value Retrieval Networks for Task-Oriented Dialogue - Neural task-oriented dialogue systems often struggle to smoothly interface with a knowledge base. In this work, we seek to address this problem by proposing a new neural dialogue agent that is able to effectively sustain grounded, multi-domain discourse through a novel key-value retrieval mechanism. The model is end-to-end differentiable and does not need to explicitly model dialogue state or belief trackers. We also release a new dataset of 3,031 dialogues that are grounded through underlying knowledge bases and span three distinct tasks in the in-car personal assistant space: calendar scheduling, weather information retrieval, and point-of-interest navigation. Our architecture is simultaneously trained on data from all domains and significantly outperforms a competitive rule-based system and other existing neural dialogue architectures on the provided domains according to both automatic and human evaluation metrics.
      2. 2019: A Repository of Conversational Datasets - we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using ‘1-of-100 accuracy’. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set.
      3. 2020 - ACL: Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Dialog - most neural models rely on large training data, which are only available for a certain number of task domains, such as navigation and scheduling. This makes it difficult to scalable for a new domain with limited labeled data. However, there has been relatively little research on how to effectively use data from all domains to improve the performance of each domain and also unseen domains. To this end, we investigate methods that can make explicit use of domain knowledge and introduce a shared-private network to learn shared and specific knowledge. In addition, we propose a novel Dynamic Fusion Network (DF-Net) which automatically exploit the relevance between the target domain and each domain. Results show that our model outperforms existing methods on multi-domain dialogue, giving the state-of-the-art in the literature. Besides, with little training data, we show its transferability by outperforming prior best model by 13.9% on average
      4. 2020: DialoGLUE: A Natural Language Understanding Benchmark for Task-Oriented Dialogue - we introduce DialoGLUE (Dialogue Language Understanding Evaluation), a public benchmark consisting of 7 task-oriented dialogue datasets covering 4 distinct natural language understanding tasks, designed to encourage dialogue research in representation-based transfer, domain adaptation, and sample-efficient task learning. We release several strong baseline models, demonstrating performance improvements over a vanilla BERT architecture and state-of-the-art results on 5 out of 7 tasks, by pre-training on a large open-domain dialogue corpus and task-adaptive self-supervised training.
  4. Visual Dialog
    1. Datasets
      1. VisDial
      2. ConvAI2
      3. Wizard of Wikipedia
    2. Papers
      1. 2021 EMNLP - Multi-Modal Open-Domain Dialogue: With the goal of engaging humans in multi-modal dialogue, we investigate combining components from state-of-the-art open-domain dialogue agents with those from state-of-the-art vision models. We study incorporating different image fusion schemes and domain-adaptive pre-training and fine-tuning strategies, and show that our best resulting model outperforms strong existing models in multi-modal dialogue while simultaneously performing as well as its predecessor (text-only) BlenderBot (Roller et al., 2020) in text-based conversation. We additionally investigate and incorporate safety components in our final model, and show that such efforts do not diminish model performance with respect to engagingness metrics.
  5. Dialogue Act Classification
    1. Datasets
      1. Switchboard corpus
      2. ICSI Meeting Recorder Dialog Act (MRDA) corpus
    2. Papers
      1. 2020: Guiding attention in Sequence-to-sequence models for Dialogue Act prediction: Seq2seq models are known to learn complex global dependencies while currently proposed approaches using linear conditional random fields (CRF) only model local tag dependencies. In this work, we introduce a seq2seq model tailored for DA classification using: a hierarchical encoder, a novel guided attention mechanism and beam search applied to both training and inference. Compared to the state of the art our model does not require handcrafted features and is trained end-to-end. Furthermore, the proposed approach achieves an unmatched accuracy score of 85% on SwDA, and state-of-the-art accuracy score of 91.6% on MRDA.
  6. Empathetic Response Generation
    1. Papers
      1. 2020 EMNLP: MIME: MIMicking Emotions for Empathetic Response Generation - We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content. We show that the consideration of this polarity-based emotion clusters and emotional mimicry results in improved empathy and contextual relevance of the response as compared to the state-of-the-art. Also, we introduce stochasticity into the emotion mixture that yields emotionally more varied empathetic responses than the previous work. We demonstrate the importance of these factors to empathetic response generation using both automatic- and human-based evaluations.
  7. Short-Text Conversation: Given a short text, finding an appropriate response (Source: http://staff.ustc.edu.cn/~cheneh/paper_pdf/2013/HaoWang.pdf)
    1. Papers
      1. 2020 - A Large-Scale Chinese Short-Text Conversation Dataset - In this paper, we present a large-scale cleaned Chinese conversation dataset, LCCC, which contains a base version (6.8million dialogues) and a large version (12.0 million dialogues). The quality of our dataset is ensured by a rigorous data cleaning pipeline, which is built based on a set of rules and a classifier that is trained on manually annotated 110K dialogue pairs. We also release pre-training dialogue models which are trained on LCCC-base and LCCC-large respectively.
  8. End-to-End Dialogue Modelling
    1. Datasets
      1. MultiWoz 2.0
    2. Papers
      1. 2021: Pretraining the Noisy Channel Model for Task-Oriented Dialogue - Direct decoding for task-oriented dialogue is known to suffer from the explaining-away effect, manifested in models that prefer short and generic responses. Here we argue for the use of Bayes’ theorem to factorize the dialogue task into two models, the distribution of the context given the response, and the prior for the response itself. This approach, an instantiation of the noisy channel model, both mitigates the explaining-away effect and allows the principled incorporation of large pretrained models for the response prior. We present extensive experiments showing that a noisy channel model decodes better responses compared to direct decoding and that a two stage pretraining strategy, employing both open-domain and task-oriented dialogue data, improves over randomly initialized models.
  9. Task-Completion Dialogue Policy Learning
    1. Papers
      1. 2018 EMNLP: Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning - This paper presents a Discriminative Deep Dyna-Q (D3Q) approach to improving the effectiveness and robustness of Deep Dyna-Q (DDQ), a recently proposed framework that extends the Dyna-Q algorithm to integrate planning for task-completion dialogue policy learning. To obviate DDQ’s high dependency on the quality of simulated experiences, we incorporate an RNN-based discriminator in D3Q to differentiate simulated experience from real user experience in order to control the quality of training data. Experiments show that D3Q significantly outperforms DDQ by controlling the quality of simulated experience used for planning. The effectiveness and robustness of D3Q is further demonstrated in a domain extension setting, where the agent’s capability of adapting to a changing environment is tested.
  10. Conversation Disentanglement: Automatic disentanglement could be used to provide more interpretable results when searching over chat logs, and to help users understand what is happening when they join a channel.
    1. Datasets
      1. irc-disentanglement
    2. Papers
      1. 2020: Pre-Trained and Attention-Based Neural Networks for Building Noetic Task-Oriented Dialogue Systems - The NOESIS II challenge, as the Track 2 of the 8th Dialogue System Technology Challenges (DSTC 8), is the extension of DSTC 7. This track incorporates new elements that are vital for the creation of a deployed task-oriented dialogue system. This paper describes our systems that are evaluated on all subtasks under this challenge. We study the problem of employing pre-trained attention-based network for multi-turn dialogue systems. Meanwhile, several adaptation methods are proposed to adapt the pre-trained language models for multi-turn dialogue systems, in order to keep the intrinsic property of dialogue systems.
  11. Dialogue Interpretation
    1. 2020 ACL: Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation - The encoder-decoder dialog model is one of the most prominent methods used to build dialog systems in complex domains. Yet it is limited because it cannot output interpretable actions as in traditional systems, which hinders humans from understanding its generation process. We present an unsupervised discrete sentence representation learning method that can integrate with any existing encoder-decoder dialog models for interpretable response generation. Building upon variational autoencoders (VAEs), we present two novel models, DI-VAE and DI-VST that improve VAEs and can discover interpretable semantics via either auto encoding or context predicting. Our methods have been validated on real-world dialog datasets to discover semantic representations and enhance encoder-decoder models with interpretable generation.

Next

Semantic Parsing